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Log-derived permeabilities provide reliable estimates of 
reservoir Dykstra-Parsons Variance (DPV) when labora-
tory-measured core permeabilities are not available. They 
also provide broader and deeper coverage of heterogeneity 
throughout the entire reservoir and are used to compare 
DPV with net-to-gross (N/G) approaches.  

Twenty-five sandstone and carbonaceous 
producing units were analyzed with DPV us-
ing core and log data. Results show that, in 
the absence of core-derived permeabilities, 
log-derived permeabilities reliably estimate 
DPV in development wells, guaranteeing het-
erogeneity coverage over the entire reservoir.  

Additionally, comparison of a broad range 
of reservoir sands, from clean to very shaly, 
demonstrated the reliability of log-derived 
permeabilities. The alternative N/G model 
defining heterogeneity showed substantial 
scatter, with values frequently much higher 
or lower than corresponding DPV values.

Waterflood modeling
Waterflooding is the most common method of 
complementing the natural depletion energy 
of oil reservoirs with natural recovery factors 
of 22-25%. Waterflooding can add 10-15% 
recovery, more when combined with surfac-
tants, polymers, and slugs of CO

2
 and natural 

gas. It is now standard practice to start water 
injection at the onset of new field development, 
particularly in offshore fields (which comprise 
70% of all new oil discoveries worldwide). 

Early water injection and stranded gas in-
jection are credited with the average recov-
ery factor of almost 50% in the North Sea, 

the highest regional recovery factor in the world. In the US, 
waterflooding contributes to more than half of traditional 
oil production (excluding unconventional production) and 
to its nearly 40% overall average recovery factor. There are 
large waterflood projects in the Middle East with injection 
rates of more than 4 million b/d.
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Log-derived permeability describes 
reservoir heterogeneity

EQUATIONS

(1) 

(2) 

(3) 

DPV = (k50 – k84.1) / k50 

k = [C x F 3/Swirr]2

k = [0.136 x F 4.4/Swirr2]  

k = A x F 4 x T2 (4) 

where: 
k = permeability, md 
k84.1 = permeability at 84.1% probability 

(mean + one standard deviation), md 
k50 = mean permeability at 50% probability, md 
F = porosity, % 
Swirr = irreducible water saturation above the 

transition zone 
C = constant whose value depends on the 

density of the hydrocarbons in the formation. 
C=250 for medium gravity oils, C=79 for dry  
gas at shallow depths. 

A, T = constants that account for pore size and pore 
connectivity, respectively, obtained using core 
or well-formation test data.   
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combines with gross volumetric sweep to estimate ultimate 
recovery limits.

Other than the pore-size distribution obtained from 
displacement experiments, the afore-listed reservoir char-
acteristics, except for heterogeneity, are log-derived. Dyk-
stra-Parsons determined heterogeneity by using core-es-
tablished permeability at 1-ft intervals to establish DPV 
through a variance relationship (Equation 1).

Permeability at 84.1% probability (mean + one standard 
deviation) and 50% probability are 
obtained from a log-probability chart 
where available laboratory measure-
ments on core-samples are ordered 
and graphed. DPV ranges from zero 
for a uniform or homogeneous res-
ervoir to a maximum of one for ex-
tremely heterogenous reservoirs. Field 
variations often range from about 
0.30 to 0.60. 

This DPV-permeability relation-
ship is historically used as the hetero-
geneity indicator within the industry 
(OGJ, Dec. 4, 2017, p. 40). Its major 
limitation has been that it is obtained 
from a small number of samples re-
moved from the reservoir through cor-
ing, which correspond to a very small 
portion of the reservoir’s total volume. 
Core data are expensive and risky to 
obtain, especially now that wells are 
drilled to deeper horizons associated 
with high pressures and temperatures. 
For these reasons, coring is done in 
only a few wells (about one in five) and 
at discrete intervals, providing limited 
data over the entire reservoir.

Modern reservoir simulators cover 
the entire reservoir in detail and pro-
duce real-time injection profiles to 
adjust operations and optimize oil re-
covery and NPV. In this context, N/G, 
readily available from logs, has been 
used as an alternative to DPV in mul-
tiple grid cells in reservoir simulators 
and in defining reservoir-quality in-
dex (RQI), providing analytical rela-
tionships of well-productivity in new 
discoveries (OGJ, Dec. 5, 2016, p. 55; 
OGJ, Jan. 3, 2022, p. 30). N/G rang-
es from one to zero, with one corre-
sponding to a homogeneous reservoir. 

This work adapts the DPV tech-
nique by using log-derived instead 
of core-derived permeabilities for in-

Critical to recovery efficiencies of waterflood projects are 
two intrinsic controlling factors: fluid and reservoir char-
acteristics.  Fluid viscosity controls mobility ratio, the de-
termining factor of areal efficiency and a significant part 
of the vertical sweep. Five well-established reservoir char-
acteristics (permeability, porosity, net hydrocarbon pay, 
heterogeneity, and pore-pressure gradient) fundamentally 
define well-productivity and injection rates. Further, pore-
size distribution controls microscopic displacement which 

CORE-, LOG-DERIVED PERMEABILITIES FIG. 1

Source: Morris, R.L. and Biggs, W.P., “Using Log-derived Values of Water Saturation and Porosity,” SPWLA-1967-X, SPWLA 8th Annual Logging 
Symposium, Denver, Colo., June 1967. 
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zontal-vertical anisotropy, such as when accumulating sedi-
ments (sand grains for example) deposit along the bedding 
plane and are mixed in with impermeable laminae such as 
mica or lignite flakes. This leads to highly permeable lay-
ers with distinct horizontal permeability and no crossflow 
between layers (zero vertical permeability). Either natural 
aquifer or injected fluids therefore move along the bedding 
plane but maintain vertical segregation across layers. This 
permeability segregation illustrates the difference between 
absolute flow capacity of any producing interval and het-
erogeneity in k-values among different sediment layers as 
characterized by the DPV indicator.

stances in which laboratory-measured core permeabilities 
are not available. This provides broader and deeper cover-
age of heterogeneity throughout the reservoir and a com-
parison between the DPV and N/G approaches. The study 
covers a wide spectrum of 25 mostly sandstone and some 
carbonaceous producing units with appropriate core and 
log data. 

Estimating reservoir heterogeneity
Flow capacity (k × h

net
) of any fluid-producing formation 

interval is controlled by the combination of its permeability 
and net thickness. In addition, permeability contains hori-

PETROPHYSICAL PROPERTIES Table

Field Formation Age Location, Basin, Country Depth Range, ft hgross, ft hnet, ft N/G DPVcore DPVlog K50 core,  K50 log,  Φ Swirr,  
          md md          fraction

Santa Rosa Lower Moreno Miocene Santa Rosa, Venezuela 2,600-2,700 100 75 0.75 0.18 0.16 1,101 1,053 30.0 0.17

Guafita G-3,G-10 Mio - Oligocene Barinas, Apure, 
Southwestern Venezuela 7,350-8,300 505 149 0.91 0.24 0.12 3,303 3,448 26.4 0.08

Guafita G-3,G-10 Mio - Oligocene Barinas, Apure, 
Southwestern Venezuela 7,350-8,300 135 73 0.27 0.24 0.13 2,059 2,241 25.8 0.09

Guafita G-3,G-10 Mio - Oligocene Barinas, Apure, 
Southwestern Venezuela 7,350-8,300 126 112 0.19 0.40 0.24 1,445 1,662 25.0 0.09

Valdivia - Almagro Mirador 1 Eocene Meta, Llanos Orientales, 
Colombia 5,400-5,500 11 10 0.89 0.33 0.25 450 463 24.6 0.17

Valdivia - Almagro Mirador 2 Eocene Meta, Llanos Orientales, 
Colombia 5,400-5,500 7 6 0.86 0.18 0.12 1,166 1,236 25.0 0.11

Valdivia - Almagro Mirador 3 Eocene Meta, Llanos Orientales, 
Colombia 5,400-5,500 17 17 1.00 0.43 0.33 510 868 25.2 0.13

Valdivia - Almagro Mirador 4 Eocene Meta, Llanos Orientales, 
Colombia 5,400-5,500 13 12 0.90 0.48 0.48 2,396 2,018 23.8 0.07

Valdivia - Almagro Mirador 5 Eocene Meta, Llanos Orientales, 
Colombia 5,400-5,500 29 23 0.78 0.29 0.22 2,414 2,517 25.3 0.08

Socororo Merecure 
U1M,L Oligocene Eastern Venezuela 3,700-3,800 33 23 0.70 0.45 0.32 160 173 19.2 0.15

Socororo Merecure U2U Oligocene Eastern Venezuela 3,700-3,800 19 15 0.79 0.51 0.38 142 156 19.7 0.15

Furrial 1 San Juan -  
San Antonio Cretaceous North Monagas,  

Venezuela
15,000-
16,000 27 16 0.59 0.64 0.62 82 108 13.0 0.05

Furrial 2 San Juan -  
San Antonio Cretaceous North Monagas,  

Venezuela
15,000-
16,000 157 124 0.79 0.52 0.59 138 114 13.9 0.06

Furrial 3 San Juan -  
San Antonio Cretaceous North Monagas,  

Venezuela
15,000-
16,000 837 578 0.69 0.65 0.56 245 208 16.2 0.07

Furrial 4 San Juan -  
San Antonio Cretaceous North Monagas,  

Venezuela
15,000-
16,000 157 124 0.79 0.59 0.57 389 369 16.8 0.06

Furrial 5 San Juan -  
San Antonio Cretaceous North Monagas,  

Venezuela
15,000-
16,000 837 518 0.62 0.55 0.55 395 346 17.7 0.07

Magnolia AR-F* Reynolds  - 
Smackover Cretaceous Arkansas, US 7,000-7,500 210 170 0.81 0.85 0.79 100 61 15.3 0.09

West Burkburnett Gunsight Pennsylvanian North Texas, US 1,550-1,850 N/A 12 N/A 0.23 0.23 128 118 16.8 0.10

West Burkburnett Gunsight Pennsylvanian North Texas, US 1,550-1,850 N/A 12 N/A 0.31 0.41 54 51 14.0 0.09

West Burkburnett Gunsight Pennsylvanian North Texas, US 1,550-1,850 N/A 12 N/A 0.50 0.54 11 9 9.6 0.06

Pennsylvanian 
Dolomite Grayburg Paleozoic Northern Texas, US 5,400-5,450 21 6 0.29 0.52 0.66 49 35 12.6 0.08

Pennsylvanian 
Dolomite Grayburg Paleozoic Northern Texas, US 5,400-5,450 17 4 0.24 0.55 0.67 14 12 12.0 0.10

Pennsylvanian 
Dolomite Grayburg Paleozoic Northern Texas - USA 5,400-5,450 12 6 0.50 0.60 0.75 25 9 11.9 0.10

Perla Oolite Z-0 Miocene Western Venezuela 9,150-9,200 80 19 0.24 0.60 0.75 20 17 23.5 0.25

Perla Oolite Z-1 Miocene Western Venezuela 9,150-9,200 120 38 0.32 0.69 0.79 22 9 19.4 0.25

* Oil &Gas Journal, Mar. 23, 1959. p 64
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developed in addition to the Wyllie-Rose model: Timur 
(Equation 3) and Schlumberger-Doll-Research (SDR) 
(Equation 4).

All three models treat permeability as an exponential 
function of porosity and, in general, provide similar and 
reliable continuous k-estimates. This study uses Wyllie-
Rose to calculate DPV

log
. Corresponding DPV

core
 were cal-

culated from respective core data. Swirr embodied in the 
different permeability models are obtained from well logs 
using variants of Archie’s law (1942) for heterogenous 
sands, as will be discussed below.

The table summarizes DPV
core

, DPV
log

, and N/G for 25 
producing units from reservoirs of different types in three 
countries. The reservoirs are grouped into three lithologi-
cal and permeability categories: clean sands above 500 
md, typical shaly sands in the 100–500 md range, and 

tight-shaly-carbonaceous sands be-
low 100 md. There are a couple of 
reservoirs with k

50
 permeabilities 

that fall on the edges of the above 
ranges. Two reservoirs are includ-
ed with special anomalies (gas and 
oolites). For inclusiveness, the table 
also provides ancillary data such as 
reservoir age, depth, thickness, k

50
 

permeability, porosity, and irreduc-
ible water saturation.  

Fig. 2 shows the range and spread 
of DPV

core
, DPV

log
, and N/G for reser-

voirs listed in the table. The diagonal 
line defines ideal matches between 
DPV

core
 and DPV

log
. Observed consis-

tency between calculated DPV
core

 and 
DPV

log
 and proximity to the match-

line show that log-derived calculated 
permeabilities are a reliable substi-
tute for core-derived measured per-
meabilities. 

The graph also shows that N/G 
defines heterogeneity distinctly from 
the DPV concept. N/G values are, in 
general, higher than corresponding 
DPV values for clean, high-permea-
bility sands and considerably lower 
for shaly reservoirs. Oolites exhibit 
extreme differences. Overall, N/G 
values show significant scatter. N/G 
describes the flow capacity (k × h

net
) 

of each producing interval, however, 
absolute values for different vertical 
sections are not a valid indicator of 
heterogeneity compared with DPV, 
which has a characteristic spread of 
k-horizontal values for each layer. 

In this study, DPV is determined using permeability 
obtained from laboratory measurements, which itself is 
not directly available from logs. Modern logging meth-
ods, however, provide good estimates of formation per-
meability, based on reliable relationships with porosity 
and irreducible water saturation in most reservoir for-
mations. One of the early models developed by Wyl-
lie and Rose is shown in Equation 2. Irreducible water 
saturation is required in this model since it is a neces-
sary condition for the validity of the estimated absolute  
rock permeability.  

Fig. 1 compares log- and core-derived porosities and 
permeabilities over an interval of 64 ft of Louisiana Mio-
cene gas sand. Average core permeability is 320 md com-
pared with 280 md for the log-derived permeability. Two 
variations to the original permeability model have been 
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Water saturation correction
The efficiency of extending log analysis to permeability es-
timation is largely dependent on the accuracy of porosity 
and S

wirr.
 Archie’s law (1942) is the classical log approach 

to obtain S
wirr

 in the absence of core measurements and 
when formation characteristics are sufficiently uniform to 
extrapolate from well-to-well. Alternatively, cross plots are 
used to determine S

wirr
 when formations are not sufficient-

ly consistent, for wildcat wells where empirical data are 
not available, for wells drilled with oil-base muds, or for 
wells drilled within transition zones. Relevant cross plots 
verify the key k

50
 factor in the DPV relationship, and the 

overall k-F-S
wirr

 relationship in Equation 2 over a broad 
range of permeability and lithology. The key parameter 
that defines heterogeneity in DPV is k

50
.  

Fig. 3 shows a cross plot between k
50 

calculated from cores 
and logs for the 25 producing units listed in the table. The cor-
relation verifies the validity of this study’s permeability model 
and the premise that the DPV technique can be adapted to us-
ing log-derived instead of core-derived permeabilities.

Fig. 4 shows the empirical relationship between k, F, 
and S

wirr 
as a graphical expression of Equation 2. Data points 

of this study are highlighted by sand type. The correlation 
describes a coherent pattern for heterogeneous reservoirs. 
Additionally, the graph provides a good approximation of 
S

wirr
, a critical parameter for the accuracy of all permeabil-

ity models. 
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